

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 601 (2000) 341-342

Journal ofOrgano metallic Chemistry

Note

On the in situ trimethylsilylation of zinc acetylides

Uno Mäeorg^a, Säde Viirlaid^a, Hannes Hagu^a, Hermann D. Verkruijsse^b, Lambert Brandsma^{b,*}

^a Institute of Organic Chemistry, University of Tartu, Jakobi Street 2, EE-2400 Tartu, Estonia

^b Department of Preparative Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

Received 15 November 1999; received in revised form 31 January 2000

Abstract

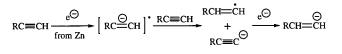
Reinvestigation of the recently published formation of silylated alkynes by reaction of 1-alkynes with zinc and trimethylchlorosilane in acetonitrile showed that appreciable amounts of 1-alkenes are formed as side products. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Trimethylacetylenes; Silylation; Reduction; Alkenes; Zinc powder

The versatility of 1-alkynes RC=CH as starting reagents in organic syntheses has led to the development of efficient functionalization methods. The first step mostly involves metallation with a Grignard reagent or a strongly basic reagent, e.g. *n*-butyllithium [1,2]. Recently, Japanese chemists [3,4] reported the formation of silylated alkynes in good to excellent yields by heating a mixture of the 1-alkyne, excess of trialkylchlorosilane and zinc powder in acetonitrile. They claim superiority of their method to the existing ones. Being interested in efficient synthetic procedures (compare Ref. [2]), we decided to repeat the published procedure on a preparative (0.10 M) scale taking the silylation of PhC=CH as a model. This reaction was carried out under atmospheric pressure.

A magnetically stirred mixture of 30 g of zinc powder (Merck, analar grade, particle size $< 60 \mu$ m), 21.6 g (0.20 mol) of trimethylchlorosilane (distilled from 5% (w/w) of *N*,*N*-diethylaniline) and 60 ml of acetonitrile (analar grade, distilled from calcium hydride) was heated under reflux under an atmosphere of nitrogen.

After about 10 h no further increase of the temperature in the boiling mixture (moderate, constant reflux) was observed ($\sim 74 \rightarrow 80^{\circ}$ C) while GLC had shown complete consumption of $PhC \equiv CH$. The excess of Me₃SiCl was distilled off as completely as possible from the stirred mixture. When CH₃CN began to pass over, the mixture was cooled to 20°C and the clear supernatant liquid was decanted from the excess of zinc and poured into 200 ml of water. The remaining slurry of zinc and CH₃CN was washed repeatedly with pentane (total volume ~ 150 ml). The combined organic solutions were washed four times with water in order to remove the CH₃CN. After drying over MgSO₄, the pentane was distilled off at atmospheric pressure. Careful vacuum distillation (30 cm Vigreux column) gave a volatile first fraction (4.0 g, consisting of $\sim 30\%$ of Me₃SiOSiMe₃ and 70% of styrene), and a main fraction of Ph=CC-SiMe₃ (b.p. 90 KC/15 mmHg) in 63% yield. There was no residue after distillation. The products were analysed with ¹H-NMR and GLC (identity with authentic samples).


The reaction time could be shortened to about 5 h by using activated zinc powder: a mixture of 35 g Zn, 50 ml of dry THF and 5 g of 1,2-dibromoethane was heated under reflux (\sim 30 min) until evolution of

^{*} Corresponding author.

E-mail addresses: uno@chem.ur.ee (U. Mäeorg), l.brandsma@ chem.uu.nl (L. Brandsma)

ethene had stopped. After cooling, the THF was decanted and the remaining slurry rinsed several times with CH_3CN in order to remove the THF.

Reactions with $HC = C(CH_2)_{Q}OH$ and HC = C-n- $C_{10}H_{21}$ were also carried out with zinc activated by treatment with 1,2-dibromoethane. The rates of conversion of these acetylenes were much lower than that of PhC=CH. After 5 h refluxing work-up was carried out and the product mixture analysed with GLC and ¹H-NMR spectroscopy, 45% (rel.) of undecynol and 22% of dodecyne still being present. In addition the alkynes $H_2C=CH(CH_2)_9OH$ (11%) reduced and $H_2C=CH-C_{10}H_{21}$ (22%) had formed, together with the TMS-derivatives Me₃SiC=C(CH₂)₉OH (44%) and Me₃SiC=CC₁₀H₂₁ (61%). Also, Sugita et al. [3] found reduction to be a significant side reaction in several cases when a Zn/Cu couple was used, whereas with the same kind of activated zinc they obtained PhC=CSiMe₃ in an excellent yield and no styrene was formed. The formation of olefinic compounds may be explained by an electron transfer-deprotonation mechanism, similar to the sequence involved in the preparation of alkali acetylides from alkali metals and acetylene in liquid ammonia [5].

 $\underset{\text{RCH}=\text{CH}}{\overset{\bigcirc}{\longrightarrow}} \xrightarrow{\text{RC}=\text{CH}} \text{RCH}_{\text{CH}_{2}} + \text{RC} \underset{\overset{\bigcirc}{=} \text{CH}}{\overset{\bigcirc}{\longrightarrow}} \xrightarrow{\text{RC}=\text{C}-\text{SiMe}_{3}}$

According to this mechanism the maximally attainable yield of silylated acetylenes is 66%, which compares with the yield obtained by us from the reaction with PhC=CH.

It seems to us that a more thorough investigation is necessary to reveal the cause of the discrepancies observed.

References

- V. Jäger, G. Viehe, Methoden zur Herstellung und Umwandlung von Alkine, in: Houben-Weyl, Methoden der Organischen Chemie, Band V-2a, Alkine, Di- un Polyine, Allene, Kumulene, Georg Thieme Verlag, Stuttgart, 1977.
- [2] L. Brandsma, Preparative Acetylenic Chemistry, Rev. Ed, Elsevier, Amsterdam, 1988.
- [3] H. Sugita, Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 36 (1995) 2769.
- [4] H. Sugita, Y. Hatanaka, T. Hiyama, Synlett (1996) 637.
- [5] A.L. Henne, K.W. Greenlee, J. Am. Chem. Soc. 65 (1943) 2020.
 (b) G.W. Watt, Chem. Revs. 46 (1950) 317.